
London South Bank University
Division of Computer Science and Informatics,

School of Engineering

Automatic Segmentation of 3D MRI
Images of the Pituitary Gland For

Medical Image Analysis

by

Oyinlola A.

A dissertation submitted in partial fulfilment
of the requirements for the degree of

Master of Science
(Applied Artificial Intelligence)

Submitted

13th September, 2024



Abstract

In this study, deep learning’s application in automatically segmenting the pituitary

gland in 3D MRI brain scans was explored. To automate the process, the SAM-

Med3D model, a pre-trained deep learning model, was utilized. A subset of images

had manually segmented ground truth data, and preprocessing steps like normaliza-

tion and resampling were applied. Despite extensive efforts to fine-tune the model,

challenges emerged due to its inability to correctly interpret and utilize the provided

label masks, resulting in segmentation failures. Several methods were explored to

address this issue, but none yielded optimal performance. This underscores the lim-

itations of directly applying pre-trained models to specialized tasks like pituitary

gland segmentation. The research indicates that more advanced label preprocess-

ing or further customization of the model is required to overcome these challenges.

While the model faced difficulties in accurately identifying the labels, this study

offers valuable insights for enhancing deep learning approaches in medical image

analysis.
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Chapter 1

Introduction

1.1 Background and Context

The pituitary gland, often referred to as the ”master gland,” is a vital component

of the endocrine system, essential for maintaining various physiological processes

within the human body (Barkhoudarian and Kelly 2017). Situated at the base of

the brain within a bony structure known as the sella turcica, the pituitary gland is

remarkably small, roughly the size of a pea (Lakanwal 2023). Despite its diminutive

size, its role in regulating numerous hormonal functions makes it critical for overall

health. Figure 1.1 on the next page from (University 2023) shows the anatomy of

the pituitary gland.

The pituitary gland consists of two main lobes: the anterior lobe (adenohypophysis)

and the posterior lobe (neurohypophysis). Each lobe produces and releases a distinct

set of hormones, which are crucial for various bodily functions:

1. Anterior Pituitary Lobe: This lobe produces several key hormones, including:

• Growth Hormone (GH): Stimulates growth, cell reproduction, and cell

regeneration. GH is crucial during childhood for normal growth and is
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Figure 1.1: Anatomy of the Pituitary Gland

involved in regulating metabolism throughout life (Soliman et al. 2024).

• Adrenocorticotropic Hormone (ACTH): Stimulates the adrenal glands to

produce cortisol, a hormone that helps the body respond to stress and

regulates metabolism (Weinberg 2024).

• Thyroid-Stimulating Hormone (TSH): Regulates the thyroid gland’s pro-

duction of thyroid hormones, which are essential for metabolism and en-

ergy regulation (Zwahlen et al. 2024).

• Gonadotropins (LH and FSH): Luteinizing hormone (LH) and follicle-

stimulating hormone (FSH) are critical for reproductive health, regulat-

ing menstrual cycles, ovulation, and sperm production (Athar, Karmani,

and Templeman 2024).

2. Posterior Pituitary Lobe: This lobe does not produce hormones but stores and

releases two important hormones:
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• Oxytocin: Plays a role in childbirth and lactation by stimulating uterine

contractions and milk ejection. It is also involved in social bonding and

emotional regulation (Nogueira-Vale 2024).

• Vasopressin (Antidiuretic Hormone, ADH): Regulates water balance in

the body by influencing kidney function and blood pressure (Calvi et al.

2024).

Figure 1.2: Hormonal Functions of the Pituitary Gland

Figure 1.2 from (ResearchGate 2024a) helps us understand the hormonal functions

of the pituitary gland. Given its central role in regulating vital physiological func-

tions, any dysfunction or abnormality in the pituitary gland can lead to a range

of significant health issues. Common conditions associated with pituitary gland

dysfunction include:

1. Pituitary Tumors: Abnormal growths in the pituitary gland that can lead to

excessive hormone production (e.g., acromegaly from GH-secreting tumours)
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or decreased hormone production (e.g., hypopituitarism (Reddy, Goparaju,

and Fleseriu 2024).

2. Hypopituitarism: A condition characterized by reduced hormone production

from the pituitary gland, leading to various symptoms depending on the af-

fected hormones (Corsello, Paragliola, and Salvatori 2024).

3. Acromegaly: Caused by excess GH, leading to abnormal growth of bones and

tissues, often due to pituitary tumours (Al-Hadlaq and Sroussi 2024).

4. Cushing’s Syndrome: Resulting from excessive cortisol production, often due

to ACTH-secreting pituitary tumours, leading to weight gain, high blood pres-

sure, and other health issues (Fion, Saieehwaran, and Subashini 2024).

The Role of Magnetic Resonance Imaging (MRI) in Pituitary Gland As-

sessment

Magnetic Resonance Imaging (MRI) is widely regarded as the gold standard for

visualizing the pituitary gland and diagnosing related disorders (Dongre 2023, Lv

2024). MRI offers several advantages over other imaging modalities, particularly for

detailed anatomical and pathological assessment of soft tissues:

1. High Spatial Resolution: MRI provides excellent spatial resolution, allowing

for detailed visualization of the pituitary gland’s small and complex struc-

ture (Jipa and Jain 2021). This high resolution is crucial for detecting subtle

abnormalities and for accurate localization of pituitary lesions.

2. Superior Soft Tissue Contrast: Unlike CT scans, which use ionizing radiation,

MRI utilizes magnetic fields and radio waves to generate images (Ma 2024).

This approach offers superior contrast between different soft tissues, making it
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particularly effective for differentiating the pituitary gland from surrounding

structures and identifying pathological changes.

Table 1.1: Comparison of Imaging Modalities for Pituitary Gland Assessment

Modality Advantages Limitations
MRI High soft tissue contrast,

excellent spatial resolu-
tion, and non-ionizing
radiation are ideal for
detecting microadenomas
and evaluating gland
morphology.

Sensitive to motion arte-
facts, longer scan time,
high cost, not suitable for
patients with certain im-
plants.

CT Faster scan time, good for
assessing bony structures
and calcifications, widely
available and less expen-
sive than MRI.

Limited soft tissue con-
trast compared to MRI,
involves ionizing radia-
tion, less effective in de-
tecting small pituitary le-
sions.

PET Provides metabolic and
functional information, is
useful in detecting the
metabolic activity of tu-
mours, and can be com-
bined with CT or MRI for
anatomical correlation.

Lower spatial resolution
for soft tissue structures,
high radiation dose, ex-
pensive, limited availabil-
ity, potential artefacts.

3. No Ionizing Radiation: MRI does not expose patients to ionizing radiation,

making it a safer choice for repeated imaging, especially in patients who require

long-term monitoring (Mittendorff, Young, and Sim 2022).

Despite these advantages, imaging the pituitary gland presents several challenges:

• Small Size and Variable Morphology: The pituitary gland’s small size and

variability in shape and location can complicate its imaging (Ray 2020). Subtle

changes or abnormalities may be difficult to detect and require precise imaging

techniques and interpretation.
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• Artifacts and Noise: MRI images can be affected by various artefacts and noise,

which may obscure or distort the pituitary gland’s features (Chrysikopoulos et

al. 2020). Common artefacts include susceptibility artefacts from surrounding

tissues and motion artefacts from patient movement. (Galldiks et al. 2024, Be-

heshti et al. 2020) in their papers both compared different imaging modalities

for assessing pituitary lesions shown in Table 1.1.

• Resolution Limitations: While MRI offers high spatial resolution, the resolu-

tion may still be insufficient for visualizing microscopic lesions or for distin-

guishing between closely spaced anatomical structures (Weiskopf et al. 2021).

Figure 1.3 from (ResearchGate 2024b) shows the common challenges in MRI

scans.

Figure 1.3: Common challenges in MRI images of the brain

To address these challenges, precise and reliable segmentation methods are essen-

tial. Accurate segmentation enables clinicians to delineate the pituitary gland from

surrounding tissues, facilitating better diagnosis and treatment planning (Gillett,
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MacFarlane, et al. 2023).

Advancements in Segmentation Techniques

Recent advancements in medical image analysis have significantly improved segmen-

tation techniques, particularly with the introduction of deep learning approaches

(Samarasinghe, Emanuele, and Mazhari 2014). Traditional segmentation methods,

such as thresholding, region-growing, and active contour models, have been valu-

able but are often limited by their reliance on manual input and susceptibility to

variability and artefacts (Sydney et al. 2021).

Deep learning, particularly Convolutional Neural Networks (CNNs), has revolution-

ized medical image segmentation by automating feature extraction and learning

complex patterns from large datasets (ResearchGate n.d.). The nnU-Net archi-

tecture, an advanced deep learning framework, has further enhanced segmentation

capabilities by automatically adapting its architecture to the specific characteristics

of different datasets (Dennison and Saviano 2018).

The SAM-Med3D model, based on the nnU-Net architecture, represents a significant

advancement in segmentation technology. SAM-Med3D is designed to handle 3D

medical images, making it particularly well-suited for segmenting complex structures

like the pituitary gland. The model incorporates advanced features such as multi-

scale processing and attention mechanisms to improve segmentation accuracy and

robustness.

By leveraging the capabilities of SAM-Med3D, clinicians can achieve more accurate

and reliable segmentation of the pituitary gland, addressing the challenges associated

with its small size and variability. This advancement not only improves diagnos-

tic precision but also enhances the efficiency of clinical workflows by reducing the

manual effort required for image analysis.
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1.2 Problem Statement

Accurately segmenting the pituitary gland from 3D MRI scans is critical for medical

diagnosis and treatment, but manual segmentation presents several challenges. The

process, typically carried out by radiologists, requires delineating the gland across

individual slices, which is labour-intensive, time-consuming, and prone to human

error. The pituitary gland’s small size and proximity to vital structures, such as the

optic chiasm and cavernous sinuses, increase the risk of inaccuracies, which can lead

to significant diagnostic and therapeutic implications.

Additionally, the morphology of the pituitary gland varies greatly between in-

dividuals due to both anatomical differences and the presence of pathological con-

ditions, further complicating the segmentation task. MRI artefacts, such as noise,

motion blur, and intensity inhomogeneity, worsen this issue, making it even more

difficult to obtain precise segmentation (L. Wang et al. 2016). Traditional image

processing techniques, such as thresholding, region growing, and edge detection,

have largely failed to address these complexities. These methods often struggle to

handle variability in gland morphology and MRI artefacts, resulting in sub-optimal

segmentation results.

In light of these challenges, an automated segmentation approach utilizing deep

learning models is a promising alternative for handling the complexities associated

with pituitary gland segmentation in 3D MRI data. By leveraging advanced neural

networks, the segmentation process can be greatly improved in terms of accuracy,

consistency, and efficiency. These models can effectively learn from diverse anatom-

ical structures and pathological variations, making them more robust to common

MRI artefacts, such as noise and motion blur. With dedicated annotated datasets,

automated systems can offer precise and reliable segmentation, reducing manual

intervention and supporting more accurate diagnosis and treatment planning.
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1.3 Significance of the Study

The significance of developing an automated, accurate, and robust segmentation

method for the pituitary gland is immense, both clinically and technologically. Clin-

ically, precise segmentation enhances diagnosis, treatment planning, and the moni-

toring of pituitary disorders, reducing the risk of human error and variability. This

contributes to better patient outcomes, particularly for conditions that require deli-

cate intervention around critical anatomical structures. Automation can reduce the

burden on radiologists, allowing them to focus on complex tasks, and improving

both the speed and quality of medical care.

Technological advancements in automated segmentation contributes to the broader

medical imaging field by pushing the boundaries of machine learning, neural net-

works, and artificial intelligence. Leveraging models such as SAM-Med3D, which

builds on architectures like nnU-Net, enhances the capacity to segment complex

structures in medical images more efficiently. These technological advances not only

improve the segmentation of the pituitary gland but also open pathways for apply-

ing these methodologies to other anatomically challenging regions, helping establish

more generalized models for various clinical applications. The ability to extend these

methods to other small but clinically significant anatomical structures represents a

leap forward in computational healthcare, offering solutions that are scalable and

adaptable across diverse medical imaging tasks.

In essence, the development of these techniques holds the potential to reshape the

landscape of medical imaging, making healthcare more efficient and patient-centric

through the integration of cutting-edge AI-driven segmentation methods. Figure 1.4

below from (Egger et al. 2012) displays the segmentation of the pituitary gland.
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Figure 1.4: Segmentation results on a sagittal slice (top row) and an axial slice
(bottom row), showing the manual segmentation in the middle images, highlighted
in yellow

1.4 Literature Review Summary

The field of medical image segmentation has evolved significantly over the past

decades, transitioning from manual and semi-automated techniques to fully au-

tomated methods driven by machine learning, particularly deep learning. Early

approaches to pituitary gland segmentation relied heavily on manual delineation,

which, despite being the gold standard, is inherently subjective and inconsistent.

Semi-automated methods, employing techniques like thresholding, region growing,

and active contour models, offered some improvements but still required significant

user intervention and lacked robustness in the presence of anatomical variability and

imaging artefacts.

In recent years, deep learning-based architectures, such as the nnU-Net, have revolu-

tionized medical image segmentation. The nnU-Net is an adaptive, self-configuring

neural network framework specifically designed to handle the unique challenges as-
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sociated with different medical imaging tasks. Unlike conventional convolutional

neural networks (CNNs), the nnU-Net automatically customizes its architecture,

training, and preprocessing strategies to maximize performance for specific datasets.

The SAM-Med3D model, based on this architecture, has demonstrated remarkable

performance in various applications, including brain tumour segmentation, organ

delineation, and retinal vessel segmentation. However, the unique challenges associ-

ated with the pituitary gland require further innovations in network design, training

strategies, and validation techniques. According to (Isensee, Petersen, et al. 2018),

table 1.2 shows a comparison of different deep learning models for medical image

segmentation.

Feature U-Net nnU-Net SAM-Med3D
Architecture Encoder-decoder

with skip connec-
tions

Self-adapting U-
Net dynamically
configures itself
for datasets

Extension of nnU-
Net optimized for
3D segmentation
tasks

Input Types 2D and 3D medi-
cal images

2D and 3D medi-
cal images

Primarily 3D
medical images

Output Types Pixel-wise/voxel-
wise segmentation
maps

Pixel-wise/voxel-
wise segmentation
maps

Pixel-wise/voxel-
wise segmentation
map

Application Areas Various biomed-
ical applications,
e.g., tumour and
organ segmenta-
tion

General-purpose,
adaptable for any
medical image
segmentation

Focused on 3D
medical image
segmentation
tasks

Key Innovations Skip connections,
symmetric expan-
sion path

Automated con-
figuration of
network and
training pipeline

3D optimization,
advanced data
preprocessing,
fine-tuning capa-
bilities

Typical Dice Score 0.80 - 0.85 (varies
by application)

0.85 - 0.95 (on
diverse medical
datasets)

0.88 - 0.96 (spe-
cific to 3D med-
ical segmentation
tasks)

Table 1.2: Comparison of Deep Learning Models for Medical Image Segmentation
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1.5 Research Objectives

The primary objective of this dissertation is to implement and fine-tune the SAM-

Med3D model, based on the nnU-Net architecture, for the automated segmentation

of the pituitary gland in 3D MRI images. The specific aims of this research are:

1. Model Implementation: Implement the SAM-Med3D model on a dataset of

3D MRI scans. This involves adapting the pre-existing model to the specific

characteristics and requirements of the dataset used in this study.

2. Data Preprocessing: Develop and apply preprocessing techniques, such as im-

age normalization, data augmentation, and noise reduction, to address chal-

lenges related to variability in gland size, shape, and location, as well as MRI

artefacts.

3. Fine-Tuning and Validation: Fine-tune the SAM-Med3D model using the

dataset, optimizing hyper-parameters and training procedures to enhance model

performance. Validate the model on independent test sets to ensure its gener-

alizability.

4. Performance Evaluation: Assess the performance of the fine-tuned model using

quantitative metrics such as accuracy, sensitivity, specificity, Dice similarity

coefficient (DSC), and Hausdorff distance. Compare these results with ex-

isting segmentation methods to demonstrate improvements in accuracy and

computational efficiency.

5. Clinical Integration: Explore the potential integration of the refined segmen-

tation method into clinical workflows, evaluating its usability and impact on

diagnostic and therapeutic processes.
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1.6 Methodology Overview

The proposed approach involves implementing and fine-tuning the SAM-Med3D

model, leveraging its nnU-Net architecture for pituitary gland segmentation in 3D

MRI images. The methodology includes:

1. Data Acquisition and Annotation: Gather a comprehensive dataset of 3D

MRI scans, including both healthy and pathological cases. Expert radiologists

annotate the pituitary gland in each scan to provide ground truth labels for

model training and validation.

2. Preprocessing: Apply preprocessing techniques to enhance image quality and

consistency. Standardize intensity values across scans through normalization,

and use data augmentation techniques such as rotation, scaling, and flipping

to increase the diversity of the training set. Implement noise reduction filters

to address MRI artefacts.

3. Model Implementation: Deploy the SAM-Med3D model based on the nnU-

Net architecture. This step involves integrating the pre-trained model with

the specific dataset and adapting its configuration to optimize performance

for pituitary gland segmentation.

4. Fine-Tuning and Optimization: Fine-tune the model using supervised learn-

ing methods, adjusting hyperparameters such as learning rate, batch size, and

number of epochs. Utilize techniques like early stopping and dropout to pre-

vent overfitting and improve model generalization.

5. Evaluation and Validation: Evaluate the fine-tuned model on an independent

test set using quantitative metrics. Perform statistical comparisons with exist-

ing segmentation methods to highlight improvements in accuracy, sensitivity,
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specificity, and computational efficiency.

Figure 1.5: Methodology flowchart

1.7 Scope and Limitations

The scope of this research is focused on implementing and fine-tuning the SAM-

Med3D model for the automated segmentation of the pituitary gland in 3D MRI

images. The study utilizes a diverse dataset, capturing variations in gland size,

shape, and location from both healthy individuals and patients with pituitary dis-

orders. This diversity ensures that the model can be tested on various anatomical

scenarios, enhancing its potential clinical relevance.

The methodologies developed in this study primarily revolve around medical im-

age segmentation using the SAM-Med3D model. While the study focuses on 3D MRI

14



data, the techniques employed can be extended to other medical imaging modalities

such as CT scans or even other anatomical regions. The research highlights the

potential for this model to automate segmentation processes in clinical workflows,

ultimately reducing manual labour and the possibility of human error, particularly

in complex cases involving small anatomical structures.

The use of the SAM-Med3D model represents a significant technological ad-

vancement in medical image segmentation. It integrates state-of-the-art techniques

from deep learning and artificial intelligence, specifically leveraging nnU-Net archi-

tecture, to deliver more accurate and adaptable solutions for medical image analysis.

By refining the model for a specific task such as pituitary gland segmentation, this

research contributes to the broader field of medical image computing, showing that

deep learning models can potentially improve diagnostic accuracy and clinical out-

comes.

Despite the model’s focus on one specific anatomical structure, the methodologies

developed in this research are highly adaptable. The success of these techniques

in pituitary gland segmentation can inform future developments in the automatic

segmentation of other small but clinically significant structures. For example, this

work may serve as a framework for tackling similar challenges in other regions, such

as the adrenal glands or hypothalamus.

However, the study acknowledges that MRI data from different scanners and

protocols may introduce variability in image quality and consistency. This variability

can affect model performance, and further research could include expanding the

dataset to account for these differences. Broadening the scope of the data will ensure

the model’s robustness across various clinical settings, making it more generalizable

and applicable to a wider range of cases.
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Criterion Pre-trained SAM-
Med3D Model

Custom-trained
Model

Training Time Shorter (due to pre-
trained weights)

Longer (training from
scratch)

Accuracy on Pituitary
Gland

Lower, less specialized Potentially higher with
proper training data

Flexibility Limited (general-
purpose)

Tailored to specific
dataset

Data Requirements Requires pre-trained
weights, less training
data

Requires large annotated
dataset

Ease of Implementa-
tion

Easier to implement Requires more time and
resources for model tun-
ing

Generalization Broad, good for other
structures

More focused, may not
generalize as well

Table 1.3: Comparison of Pre-trained SAM-Med3D vs. Custom-trained Model for
Pituitary Gland Segmentation

Table 1.3 explains the significant distinctions between a pre-trained model and

custom-trained model. In terms of data, the study uses annotated datasets to fine-

tune and evaluate the model. The quality of these annotations directly impacts the

model’s performance. Consistent and accurate annotations are critical for training

any deep learning model, particularly in medical imaging where the structures of in-

terest are often small and complex. Future improvements in annotation consistency

could further enhance the model’s accuracy in clinical settings.

Finally, while this study is largely confined to the segmentation of 3D MRI data,

it has broader implications for medical imaging as a whole. The insights gained

from this research can be applied to the segmentation of other critical anatomical

structures, making this study an essential stepping stone for future innovations in

automated medical diagnostics. Figure 1.4 shows a systematic flow of the method-

ology.
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1.8 Structure of the Dissertation

This dissertation is organized into seven chapters, each addressing a specific aspect

of the research:

• Chapter 2: Literature Review - Reviews relevant literature on pituitary gland

anatomy, MRI imaging, segmentation techniques, and deep learning methods,

identifying gaps and opportunities for innovation.

• Chapter 3: Solution Analysis and Design - Details the implementation of the

SAM-Med3D model, including architecture specifics, preprocessing steps, and

strategies for fine-tuning and validation. It explains the rationale behind the

chosen methods and expected outcomes.

• Chapter 4: Implementation - Outlines the practical implementation of the

segmentation method, including data acquisition, preprocessing, model adap-

tation, and testing, as well as the tools and resources used.

• Chapter 5: Results Testing and Evaluation - Presents experimental results,

evaluating the model’s performance using metrics like accuracy, sensitivity,

specificity, Dice Similarity Coefficient (DSC), and Hausdorff distance. It com-

pares these results with existing methods.

• Chapter 6: Future Work - Discusses potential directions for future research,

including extending the method to other anatomical structures, improving

model generalizability, and integrating the method into clinical workflows.

• Chapter 7: Conclusion and Reflection - Summarizes the research contribu-

tions, reflects on the study, and discusses implications for medical imaging

and endocrinology.
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Chapter 2

Literature Review

The segmentation of medical images plays a crucial role in the accurate diagnosis,

treatment planning, and monitoring of various medical conditions (Du et al. 2020, S.

Hussain et al. 2022). In particular, the automatic segmentation of 3D MRI images

of the pituitary gland is of significant importance due to the gland’s critical role

in regulating numerous bodily functions through hormone secretion (Anastassiadis,

Jones, and Pruessner 2019). Accurate segmentation is essential for identifying and

characterizing pathologies such as pituitary adenomas, which can have profound

effects on a patient’s health (Černỳ et al. 2023, Saha et al. 2020). This literature

review aims to synthesize and critically evaluate existing methods and advancements

in the automatic segmentation of 3D MRI images of the pituitary gland.

This review covers a broad range of techniques, from traditional manual and semi-

automatic methods to the latest advancements in machine learning and deep learn-

ing. The objective is to provide a comprehensive understanding of the evolution of

segmentation techniques, their current state, and their clinical applications. Tradi-

tional segmentation techniques, while foundational, have significant limitations in

terms of efficiency and accuracy, making the exploration of automated methods es-
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sential. The scope of this review includes classical machine learning approaches, such

as support vector machines and random forests, as well as state-of-the-art deep learn-

ing techniques like convolutional neural networks (CNNs) and U-Net architectures.

The performance of these methods is evaluated based on accuracy, robustness, and

computational efficiency. Additionally, this review addresses the challenges faced in

the segmentation process, including variability in MRI quality, gland morphology,

and integration into clinical workflows.

By reviewing and comparing various segmentation techniques, this literature review

aims to highlight the strengths and limitations of existing methods, identify gaps

in current research, and suggest directions for future advancements. The ultimate

goal is to contribute to the development of more accurate, efficient, and clinically

applicable segmentation methods that can enhance patient outcomes and advance

the field of medical image analysis.

2.0.1 Review of Manual Segmentation techniques

Overview

Manual segmentation in MRI involves expert radiologists delineating anatomical

structures by tracing their boundaries on MRI images (Deeley et al. 2011). This

process, fundamental since the 1970s, requires interpreting cross-sectional slices to

outline regions of interest such as organs or abnormalities (Hendee 1989). Radi-

ologists carefully trace these structures slice-by-slice to build a three-dimensional

model of the anatomy.

Historically, manual segmentation has been the gold standard due to its high ac-

curacy and reliability, especially when performed by skilled professionals (M. K.

Singh and K. K. Singh 2021). This method capitalizes on the radiologist’s ability
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to detect subtle tissue differences in contrast, texture, and shape, which automated

systems might miss. Manual segmentation remains essential for precise diagnostic

assessment, treatment planning, and monitoring disease progression.

Role of Expert Radiologists

Expert radiologists play a pivotal role in manual segmentation. Their extensive

training and experience enable them to interpret complex MRI data accurately.

They can distinguish between normal and pathological tissues, assess the extent

of diseases, and identify critical anatomical landmarks. The radiologist’s skill in

manual segmentation is particularly vital in challenging cases, such as those involv-

ing small or intricately shaped structures like the pituitary gland, where precise

delineation is necessary for accurate diagnosis and treatment planning.

Challenges of Manual Delineation

Manual segmentation faces several key challenges:

1. Time Consumption: The process is labour-intensive and time-consuming, of-

ten requiring hours to complete, which can be impractical in fast-paced clinical

settings (Tingelhoff et al. 2008).

2. Variability: Results can vary between different radiologists (inter-observer

variability) and even the same radiologist at different times (intra-observer

variability), leading to inconsistencies (Veiga-Canuto et al. 2022).

3. Human Error: The technique is prone to errors due to factors like fatigue,

distraction, or subjective bias, which can impact accuracy, especially in critical

cases (Itri et al. 2018).
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4. Complexity and Detail: Segmenting intricate structures, such as the pituitary

gland, is challenging and requires high expertise, with any inaccuracies poten-

tially affecting diagnosis and treatment (He Wang et al. 2021).

Study 1: 3D Printing for Visualizing Pituitary Adenomas

The study according to (Gillett, Bashari, et al. 2021) utilized manual segmenta-

tion of the pituitary gland, pituitary adenoma, carotid arteries, and surrounding

bone structures based on co-registered MRI and PET/CT images. This process in-

volved detailed manual tracing of these structures to create 3D models, which were

subsequently printed using four different 3D printing techniques: Vat Photopoly-

merization (VP), Material Extrusion (MEX), Material Jetting (MJ), and Powder

Bed Fusion (PBF).

The study found that all 3D printing techniques produced models with high spatial

accuracy, with mean spatial differences from the digital model being less than 0.6

mm. Clinicians favoured the multicoloured models (VP, MEX, MJ) for their clarity

in distinguishing anatomical structures, which facilitated better patient communi-

cation and surgical planning.

Limitations

Manual segmentation is time-consuming and requires significant expertise. The

study did not elaborate on the potential for inter-observer variability or the extensive

time commitment required. Additionally, there was no comparison with automated

or semi-automatic techniques, limiting the evaluation to purely manual methods.
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Study 2: Comparison of Manual and Semi-Automatic Segmentations Us-

ing 3D Slicer

Another study by (Egger et al. 2012 compared purely manual segmentations of

pituitary adenomas with semi-automatic segmentations using the GrowCut module

in 3D Slicer, a free and open-source medical image computing platform. The manual

segmentation involved physicians drawing boundaries on a slice-by-slice basis, while

the GrowCut algorithm provided a semi-automatic alternative that reduced user

involvement.

The results indicated that the GrowCut-based semi-automatic segmentation re-

quired approximately 30% less time and effort than pure manual segmentation. The

similarity between the manual and semi-automatic segmentations was quantified us-

ing the Dice Similarity Coefficient (DSC), yielding an average DSC of approximately

82%. This demonstrated that the semi-automatic method provided a comparable

accuracy to manual segmentation. Figure 2.1, according to (Chahal, Pandey, and

Goel 2020) shows the difference between manual and semi-automatic segmentation

in delineating a tumour in the brain.

Limitations

The limitation of manual segmentation remains its labour-intensive nature and po-

tential for inter- and intra-observer variability. Furthermore, the study did not

explore the practical challenges of implementing manual segmentation in a clinical

setting, such as the availability of trained personnel and the feasibility of routine

use in busy clinical environments.
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Figure 2.1: Comparison between manual and semi-automatic segmentation

2.0.2 Review of Semi-Automatic Segmentation Techniques

Overview

Overview: Semi-automatic segmentation combines user input with algorithmic pro-

cessing to delineate anatomical structures in medical images. Unlike fully manual

methods, semi-automatic approaches require initial guidance from a user, such as

placing seed points or rough outlines. The algorithm then refines these inputs to

segment the structure, reducing the time and effort required. Common techniques

include region growing, where an algorithm expands a region based on intensity cri-

teria, and graph cuts, which partition the image using a graph-based representation.

Semi-automatic segmentation offers a balance between accuracy and efficiency, al-

lowing for greater consistency than manual methods while still accommodating user

oversight. This makes it particularly useful in clinical settings where precision and

speed are essential.

Segmentation Methods

1. Region Growing: This technique involves starting from an initial seed point

provided by the user and growing the region based on predefined criteria, such

as intensity values (Fan et al. 2005). It is commonly used for structures with
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homogeneous regions but can struggle with complex or heterogeneous areas.

2. Graph Cuts: Graph-based algorithms segment images by minimizing a cost

function that includes both boundary smoothness and regional properties, de-

fined by user constraints (X. Chen and Pan 2018). It is effective for segmenting

objects with well-defined edges.

3. Watershed Segmentation: This algorithm treats the intensity gradient of an

image like a topographic surface and separates structures by identifying wa-

tershed lines (Safari 2020). It is useful for segmenting objects that have clear

intensity differences. Figure 2.2 is a flowchart detailing the steps involved in

semi-automatic segmentation methods, such as Region Growing, Graph Cuts,

and Watershed Segmentation.

Figure 2.2: Flowchart of Semi-Automatic Segmentation Methods

The study by (Chugh and Anand 2012) is based on an Adaptive Region Growing

(ARG) algorithm, which is an enhancement of the traditional Region Growing (RG)

technique. The ARG algorithm incorporates local pixel statistics and a Pixel Run
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Length (PRL) parameter to refine the segmentation process. The use of PRL helps

in adapting the region-growing criteria based on the specific characteristics of the

tumour, allowing for a more accurate delineation of the tumour boundaries.

The implementation of the ARG algorithm resulted in satisfactory and accurate seg-

mentation of tumours, as indicated by the quantification of tumour area, perimeter,

and form factor. These measurements facilitate the classification of different tumour

shapes and contours, which are critical for diagnosis and treatment planning. The

semi-automatic nature of the method allows it to aid radiologists and neurologists

by providing a more precise and efficient tool for analyzing MRI scans.

Another study according to (Sun et al. 2017) described a method for segmenting

pituitary adenomas in MRI images that combines the Graph Cuts Active Contour

Model (GCACM) with a random walk algorithm. The GCACM approach formulates

the segmentation task as an energy minimization problem, utilizing a hybrid active

contour model (ACM). This model incorporates local image intensities, represented

as Gaussian distributions with distinct means and variances, to establish a maximum

posterior probability (MAP). The graph cuts method is then applied to solve this

energy minimization problem. The random walk algorithm serves as an initialization

tool, providing an initial surface for the GCACM, which facilitates more accurate

segmentation of the pituitary adenoma.

The proposed method was evaluated using 3D T1-weighted MR data from 23

patients. It was compared against several other techniques, including the standard

graph cuts method, the random walk method, the hybrid ACM method, a GCACM

method with global mean intensity in region forces, and the GrowCut method im-

plemented in 3D Slicer.
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The results demonstrated that the proposed method outperformed these existing

methods, providing superior accuracy in segmenting pituitary adenomas. This supe-

riority is attributed to the combined use of local intensity information and a robust

initialization, which together enhance the method’s ability to delineate indistinct

tumour boundaries, especially in cases of infiltration into surrounding tissues.

Likewise, a study carried out in 2011 by (Zukic et al. 2011) developed a different

approach to segmentation using the watershed transform. The process starts with

the user drawing an approximate outline of the tumour on a central MRI slice. The

algorithm then calculates the tumour’s centre, intensity range, and average radius.

A small triangular mesh is initialized at the tumour’s centre and inflated outward,

maintaining a star-shaped geometry until the user-specified radius is reached, thus

segmenting the tumour.

The method was tested against manual segmentations performed by neurosurgeons

on ten MRI cases, achieving an average Dice Similarity Coefficient (DSC) of 75.92%7.24%.

The automated process significantly reduced the time required for segmentation from

about four minutes manually to roughly one second.

Limitations

They rely heavily on initial user input, which can introduce variability and affect ac-

curacy. The methods may struggle with complex and irregular tumour shapes due to

assumptions about geometric consistency. Their effectiveness also depends on MRI

quality and specific tumour characteristics. Additionally, computational complex-

ity can hinder quick processing in clinical settings. The conversion to HSV colour

space and subsequent histogram analysis may not always perfectly distinguish the

gland from similar tissues, potentially leading to inaccuracies in the segmentation

and quantification process. Further validation and refinement are needed to enhance

26



robustness and accuracy across diverse datasets. Future improvements should fo-

cus on reducing user dependency, enhancing algorithm robustness, and increasing

efficiency.

2.0.3 Review of Automatic Segmentation Techniques

Overview

Automatic segmentation techniques aim to eliminate user input, leveraging advanced

computational methods to accurately delineate anatomical structures. This shift en-

hances efficiency and consistency, making these methods increasingly vital in medical

imaging.

Classical Methods

1. Atlas-Based Segmentation: Atlas-based segmentation involves using pre-constructed

anatomical atlases as references to guide the segmentation process. The effec-

tiveness of this approach depends on the quality of the atlas and the accuracy

of the registration.

2. Deformable models, including active contours and level sets, are employed to

adapt to the shapes of anatomical structures. These models evolve iteratively

to fit the boundaries of the target region, guided by image gradients and other

features.

Machine Learning and Deep Learning Approaches

1. Traditional machine learning algorithms like k-means clustering, support vec-

tor machines (SVMs), and random forests have been applied to segmentation

tasks (Almahfud et al. 2018). These methods classify pixels or voxels based
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on handcrafted features, providing a relatively straightforward approach to

segmentation but often requiring manual feature selection and engineering.

2. The advent of deep learning, particularly convolutional neural networks (CNNs),

has revolutionized automatic segmentation. Architectures such as U-Net have

demonstrated exceptional performance in medical imaging tasks by learning

complex hierarchical features directly from the data.

In the study carried out by (Choi, Sung, and Ogawa 2024), they developed an au-

tomatic segmentation technique using a U-Net architecture to delineate pituitary

adenomas in T1-weighted MRI scans. The dataset consisted of 100 MRI scans,

which were preprocessed for standardization and augmented to improve model ro-

bustness. The U-Net model featured an encoder-decoder structure with skip connec-

tions and incorporated a spatial attention mechanism to enhance focus on relevant

regions. The dataset was split into training, validation, and testing sets, with the

model trained using the Adam optimizer and cross-entropy loss. Performance was

evaluated using metrics such as the Dice coefficient, precision, and recall. A de-

tailed diagram of the U-Net architecture used in the automatic segmentation of the

pituitary gland in (Choi, Sung, and Ogawa 2024) is shown below in figure 2.3.

The proposed model achieved an average Dice coefficient of 0.85 on the test set,

indicating high accuracy in segmenting pituitary adenomas. The precision and recall

scores were 0.88 and 0.83, respectively, demonstrating a well-balanced performance

in accurately identifying and delineating the tumour regions.

A different approach was explored by (He Wang et al. 2021). Patients diagnosed

with pituitary adenoma at Peking Union Medical College Hospital were included in

the study. A deep convolutional neural network, Gated-Shaped U-Net (GSU-Net),

was developed to segment the sellar region into eight distinct classes automatically.
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Figure 2.3: Diagram of U-Net Architecture for Automatic Segmentation

From the segmentation results, five MRI features were extracted: tumour diameters,

volume, optic chiasma height, Knosp grading system, and the degree of ICA contact.

The clinical utility of the proposed method was assessed by evaluating the diagnostic

accuracy in determining tumour consistency.

The study included two groups: the first group consisted of 163 patients confirmed

with pituitary adenoma, randomly divided into a training dataset of 131 patients and

a test dataset of 32 patients. The second group comprised 50 patients confirmed with

acromegaly. The proposed methods achieved a Dice coefficient of 0.940 for pituitary

adenoma in key image slices. Additionally, they attained accuracies exceeding 80%

in predicting five invasive-related MRI features. The automatic segmentation meth-

ods demonstrated superior performance compared to traditional methods, achieving

AUCs of 0.840 for clinical models and 0.920 for radiomics models.
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Limitations

The model’s effectiveness was significantly influenced by the quality of MRI data

and the specific characteristics of the pituitary adenomas, such as size and intensity

profiles. The study highlighted variability in segmentation accuracy, particularly in

cases with low contrast between the tumour and surrounding tissues. The compu-

tational complexity and the requirement for high-quality data present challenges for

clinical implementation. Nonetheless, the study demonstrated the potential of the

U-Net-based segmentation technique for accurately identifying pituitary adenomas.

Future work will aim to enhance the model’s accuracy, especially in challenging cases

with low contrast, and to explore its application to other anatomical regions.

2.0.4 Comparative Analysis and Discusssion

Accuracy and Reliability

1. Manual Segmentation: Manual segmentation is highly accurate due to the

radiologist’s expertise but suffers from variability and inconsistency, depending

on the operator’s skill and fatigue.

2. Semi-Automatic Segmentation: These methods balance user control and au-

tomation, offering more consistency than manual methods. However, accuracy

can still be influenced by initial user input and image complexities.

3. Automatic Segmentation: Automatic techniques, especially those using deep

learning, generally achieve high accuracy and consistency, surpassing manual

and semi-automatic methods. However, they depend on large, high-quality

training datasets and may struggle with rare or complex cases.
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Efficiency and Practicality

1. Manual Segmentation: Time-consuming and labour-intensive, manual segmen-

tation is less practical for large-scale or routine clinical use.

2. Semi-Automatic Segmentation: These methods improve efficiency and are

more practical for clinical settings but still require some user intervention,

which can introduce variability.

3. Automatic Segmentation: Highly efficient and suitable for high-throughput

environments, automatic methods eliminate user intervention but require sig-

nificant computational resources and infrastructure.

Legal, Social, Ethical, and Professional Considerations

This project aims to enhance medical diagnostics through advanced segmentation

techniques, which brings key legal, social, ethical, and professional responsibilities.

1. Data Privacy and Security: Patient data, such as MRI scans, must be anonymized

and handled in strict compliance with privacy regulations like HIPAA and

GDPR to safeguard sensitive medical information (Tzanou 2023).

2. Ethical AI Development: To avoid bias, the dataset must be diverse, ensur-

ing fair performance across all patient demographics. Transparency and ex-

plainability in AI predictions are crucial for ethical decision-making in clinical

settings (Kawamleh 2023).

3. Professional Responsibility: As medical decisions may rely on these segmen-

tation models, thorough validation, proper clinical integration, and ongoing

monitoring are necessary to avoid harmful outcomes. The project must also

consider liability issues, especially if the system is used for diagnostic purposes.
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Figure 2.4: Comparison of Efficiency and Accuracy of Different Segmentation Tech-
niques

4. Social Impact: By improving diagnosis accuracy, the project has the potential

to increase access to better care. However, disparities in access to advanced

medical AI must be mitigated to prevent inequality in healthcare quality.

Through a careful design that emphasizes data security, unbiased performance, and

professional clinical standards, this project will address these concerns to ensure it

benefits patients and healthcare providers ethically and responsibly.
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Chapter 3

Alternative Design and Final

Algorithm

3.0.1 Introduction to the Problem of Pituitary Gland Seg-

mentation

The segmentation of the pituitary gland in 3D MRI scans poses a significant chal-

lenge due to the gland’s small size, its complex anatomical location, and the vari-

ability in MRI quality. The pituitary gland, situated within the sella turcica, is

located near critical structures such as the optic chiasm and cavernous sinuses. This

proximity demands a high degree of precision in the segmentation process to avoid

diagnostic or therapeutic errors.

Traditional segmentation methods, such as manual delineation, are time-consuming

and prone to inter- and intra-operator variability, making them inefficient in clinical

workflows. Manual segmentation requires radiologists to outline the gland slice by

slice, which can lead to inconsistencies, especially when subtle anatomical differences

or artefacts in the MRI data are present. Given the critical role the pituitary gland
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plays in hormone regulation, accurate segmentation is crucial for diagnosing and

treating disorders such as pituitary adenomas, acromegaly, and Cushing’s syndrome.

Figure 3.1 from (Regency Medical Centre 2023) shows an image of a CT scan and

an MRI of the brain, comparing the quality.

Figure 3.1: Comparison between a CT scan and an MRI of the brain

The goal of this study is to propose a robust, automated solution for segmenting the

pituitary gland from 3D MRI images, which can reduce the dependency on manual

labour, improve precision, and enhance the overall efficiency of clinical workflows.

The solution must be adaptable to different MRI datasets and resilient to common

imaging artefacts such as noise and motion blur.
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3.0.2 Proposed Solution

This solution aims to develop an automated segmentation system for the pituitary

gland from 3D MRI scans, adopting a method-agnostic approach that can be im-

plemented using various technologies. The solution comprises six distinct phases:

data collection, manual segmentation for ground truth creation, data preprocessing,

integration into an existing deep learning model, fine-tuning the model, and evalu-

ating the results. By structuring the solution around these logical steps, it becomes

adaptable to different platforms, algorithms, and tools while maintaining high ac-

curacy and efficiency. Table 3.1 below shows the different stages of segmentation

workflow.

Pituitary Gland Segmentation Workflow
Data Collection Manual Segmentation Preprocessing

Gather MRI scans in
NIfTI format

Annotate gland
boundaries on 10 images

manually

Normalize intensity

Noise reduction
Resampling

Model Integration Fine-Tuning Evaluation
Incorporate pre-trained

model
Train using manual
labels (ground truth)

Validate on unseen data

Metrics: DSC, Precision,
Recall

Table 3.1: Pituitary Gland Segmentation Workflow

Data Collection and Ground Truth Creation

The process begins with gathering a diverse dataset of 3D MRI scans, which will be

used to train and fine-tune the deep learning model. The MRI data should ideally

be in NIfTI format (Neuroimaging Informatics Technology Initiative), a widely ac-
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cepted format for neuroimaging data. NIfTI ensures uniformity and compatibility

across different platforms and analysis tools.

1. Diverse Dataset: MRI data should come from a variety of sources to cap-

ture variability in scan quality, patient anatomy, and image resolution. This

diversity improves the robustness of the model.

2. Ground Truth Creation through Manual Segmentation: For accurate training

and fine-tuning of the model, manual segmentation is performed on at least

10 MRI images to create ground truth labels. In this step, radiologists or

trained professionals manually trace the boundaries of the pituitary gland

across multiple slices in each scan. This labour-intensive step is crucial, as the

model will use these ground truth labels to learn how to accurately identify

the gland.

The importance of manual segmentation is the fact it gives precise anatomical de-

lineation of the gland, which is the gold standard for training segmentation models.

By starting with a small but high-quality set of manually segmented images, the

model can be initially trained to capture the intricate structures of the pituitary

gland. This is especially important given the gland’s small size and proximity to

critical structures such as the optic chiasm and internal carotid arteries.

As shown in Algorithm 3.1, the data collection process involves converting MRI

scans from DICOM to NIfTI format.
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Listing 3.1: Data Collection and Manual Segmentation

1 Algorithm: Data Collection and Manual Segmentation

2

3 1. Input: MRI scans in various formats (e.g., DICOM ,

NIfTI)

4 2. Convert MRI scans to NIfTI format if necessary.

5 3. For each selected scan:

6 a. Load 3D MRI scan.

7 b. Manually segment the pituitary gland across slices

.

8 c. Save manual annotations as ground truth masks.

9 4. Output: Annotated NIfTI files with manual labels.

Data Preprocessing

Preprocessing the collected MRI data is a critical step that ensures the quality,

consistency, and uniformity of the input data. Without proper preprocessing, vari-

ability in image quality (e.g., noise, brightness, contrast) can negatively impact the

model’s performance. Preprocessing makes the data compatible with various ma-

chine learning algorithms by standardizing the format, reducing noise, and ensuring

that all scans have consistent voxel sizes.

1. Normalization: This step adjusts the intensity values across the dataset, en-

suring that images from different MRI machines or protocols have comparable

brightness and contrast levels. This helps the model generalize better and

avoids bias toward a specific scanning protocol.

2. Noise Reduction: MRI scans often contain noise and artefacts (e.g., motion
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blur from patient movement). Noise reduction filters, such as Gaussian filter-

ing, are applied to smooth the images while preserving the anatomical bound-

aries of the pituitary gland.

3. Resampling and Alignment: MRI scans may vary in spatial resolution, so it is

essential to resample the images to a consistent voxel size. Additionally, the

scans must be aligned in a uniform orientation so that the model can focus on

the anatomical region of interest (the sella turcica, where the pituitary gland

resides).

As shown in Algorithm 3.2, the data preprocessing involves normalization, noise

reduction and resampling.

Listing 3.2: Preprocessing of MRI Data

1 Algorithm: Preprocessing of MRI Data

2

3 1. Input: 3D MRI scans in NIfTI format

4 2. For each scan in the dataset:

5 a. Normalize intensity values across all voxels.

6 b. Apply Gaussian noise reduction to smooth the image

.

7 c. Resample to ensure consistent voxel size across

all scans.

8 3. Output: Preprocessed MRI scans ready for segmentation.
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Model Integration and Transfer Learning

After preprocessing, the data is fed into an existing deep-learning model. Rather

than building a segmentation model from scratch, which is time-consuming and

computationally expensive, a pre-trained model is leveraged. Pre-trained models

have already learned general image features and can be fine-tuned for a specific

task, such as pituitary gland segmentation.

Pre-Trained Model Selection: Models like SAM-Med3D, 3D U-Net, or V-Net are

particularly effective for medical image segmentation due to their ability to han-

dle 3D volumetric data. These models are trained on large-scale medical datasets

and have strong generalization capabilities. Transfer Learning: Transfer learning

involves taking a pre-trained model and adapting it to a new task (in this case, pi-

tuitary gland segmentation). The initial layers of the model, which capture general

image features such as edges, textures, and shapes, are frozen, while the final layers

are retrained using the specific MRI data. This allows the model to specialize in

recognizing the pituitary gland without requiring extensive training on millions of

images. Algorithm 3.3 below shows the different stages of model integration and

fine-tuning.
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Listing 3.3: Model Integration and Fine-Tuning

1 Algorithm: Model Integration and Fine -Tuning

2

3 1. Input: Preprocessed MRI scans , and manually segmented

ground truth data.

4 2. Load pre -trained model (e.g., U-Net , SAM -Med3D).

5 3. Freeze early layers of the model to retain general

features.

6 4. Modify the final layers for pituitary gland

segmentation.

7 5. Fine -tune the model using supervised learning:

8 a. Train on ground truth data using loss functions (e

.g., Dice Loss).

9 b. Adjust model weights to minimize segmentation

errors.

10 6. Output: Fine -tuned model ready for evaluation.

Evaluation and Validation

After the model has been fine-tuned, it needs to be thoroughly evaluated to en-

sure that it performs well on unseen data. The evaluation process involves testing

the model on a separate validation dataset (different from the training data) and

measuring its performance using well-established metrics.

1. Validation Dataset: The model is tested on MRI scans that were not included

in the training process to evaluate its ability to generalize to new images. This

dataset will include diverse examples, ensuring the model performs well across
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a range of different cases.

2. Evaluation Metrics:

• Dice Similarity Coefficient (DSC): Measures the overlap between the pre-

dicted segmentation and the ground truth. A higher DSC indicates better

segmentation accuracy.

• Precision: Measures the percentage of correctly predicted positive cases

(the pituitary gland) out of all predicted positive cases, indicating how

many false positives the model is making.

• Recall: Measures the percentage of correctly predicted positive cases out

of the actual positive cases, indicating how many false negatives the model

is making.

• Hausdorff Distance: Measures the greatest distance between the bound-

aries of the predicted segmentation and the ground truth, providing in-

sight into boundary accuracy.

According to Table 3.2, the four evaluation metrics and their descriptions are high-

lighted.

Fine-Tuning the Model

Once the pre-trained model is integrated, it undergoes fine-tuning on the specific

dataset. Fine-tuning adjusts the model’s parameters to optimize its performance

for pituitary gland segmentation. This step involves training the model on the

manually segmented images, gradually improving its ability to accurately predict

the boundaries of the pituitary gland.

1. Supervised Learning: The fine-tuning process uses supervised learning, where

the model’s predictions are compared against the manually segmented ground
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Metric Description Formula

Dice Similarity
Coefficient (DSC)

Measures overlap
between predicted and
ground truth masks

DSC = 2·|A∩B|
|A|+|B|

Precision Ratio of true positives to
total predicted positives

Precision = TP
TP+FP

Recall Ratio of true positives to
total actual positives

Recall = TP
TP+FN

Hausdorff Distance Measures boundary
distance between

prediction and ground
truth

max(h(A,B), h(B,A))

Table 3.2: Evaluation Metrics for Segmentation Performance

truth labels. During training, the model’s loss function (e.g., Dice Loss or

Cross-Entropy Loss) is minimized to improve the accuracy of the segmentation.

2. Optimization: The model’s parameters, such as learning rate and batch size,

are carefully optimized during fine-tuning to avoid overfitting. Techniques like

early stopping and dropout are used to prevent the model from memorizing

the training data, ensuring that it generalizes well to new images.

The fine-tuning step can be tailored based on the available computational resources.

If GPU resources are limited, batch sizes can be reduced, and optimizers like Adam

or SGD can be tuned to accelerate the training process. Furthermore, different loss

functions can be experimented with, depending on the task. For example, DL is

designed for segmentation tasks, where it directly optimizes the overlap between

predicted and ground truth masks.
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Chapter 4

Implementation

The Implementation chapter is a critical component of this dissertation, focusing on

translating the conceptual solution proposed in the preceding section into a practical,

functional system. This chapter details the technical aspects of the methodology,

including the software, hardware, and tools utilized to implement an automatic seg-

mentation solution for the pituitary gland from 3D MRI images. The primary tool

employed in this process is the SAM-Med3D model, a deep-learning framework de-

signed for medical image segmentation. The chapter elaborates on the key stages of

the implementation process: data acquisition, pre-processing, model integration, and

fine-tuning. Additionally, the rationale for selecting specific methodologies, frame-

works, and hardware configurations is discussed to justify the approach taken and

demonstrate the suitability of the chosen solutions for this particular application.
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4.0.1 Data Acquisition and Pre-processing

The dataset used for this study was obtained from Addenbrooke’s Hospital, Cam-

bridge, and consisted of 31 folders of DICOM MRI brain scans. MRI scans in

DICOM format are commonly used in medical imaging due to their detailed meta-

data and broad compatibility with imaging software. However, the NIFTI (Neu-

roimaging Informatics Technology Initiative) format is preferred for deep learning

applications, as it offers better flexibility and ease of use in Python-based machine

learning environments.

The conversion from DICOM to NIFTI format was conducted using a custom

Python script, leveraging the dcm2niix tool. The conversion process resulted in 557

individual NIFTI files, which formed the basis of the dataset used for the segmenta-

tion task. The use of NIFTI was crucial due to its compatibility with the NiBabel

library in Python, which allows easy manipulation and loading of medical images

into deep learning frameworks. Table 4.1 shows the summary of converted files.

Data Format No. of Files Conversion
Tool

Final Format

DICOM 31 folders dcm2niix NIFTI (nii)
NIFTI (nii) 557 files - NIFTI (nii)

Table 4.1: Summary of the Data Conversion Process

4.0.2 Preprocessing

To ensure the model’s robustness, several preprocessing techniques were applied.

Pre-processing is an essential step in medical imaging tasks as it ensures consistency

across the dataset, addressing the variability that can arise due to differences in

MRI scanners, patient motion, or other artefacts (Nyúl, Udupa, and Zhang 2000).

1. Normalization: Intensity normalization was applied to ensure that the pixel
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intensity values across the dataset were standardized. This step is crucial

because different MRI scans may have varying intensity ranges, which can

hinder the model’s ability to generalize across the dataset.

2. Noise Reduction: Given the susceptibility of MRI scans to noise and artefacts,

particularly those caused by patient motion or equipment interference, a Gaus-

sian filter was applied to smooth the images while preserving the structural

boundaries of the brain and pituitary gland.

3. Resampling and Alignment: The MRI scans were resampled to ensure a con-

sistent voxel size across all images. This step was critical because differences

in voxel dimensions between scans can introduce variability in the model’s

performance. All scans were also aligned to a common orientation to ensure

uniformity in the input data. Figure 4.1 shows a code snippet for resampling

one of the NIFTI image.

Figure 4.1: Resampling NIFTI image in python

These preprocessing steps were performed using Python’s NiBabel and SciPy li-

braries, selected for their integration with deep learning frameworks and their ability

to handle 3D volumetric medical images efficiently.
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Raw MRI Data

Normalization

Noise Reduction

Resampling

Preprocessed Data

Figure 4.2: Preprocessing Workflow from Raw MRI Data to Preprocessed Data

4.0.3 Selection of Software and Tools

Several software tools and programming frameworks were selected for this imple-

mentation due to their widespread use, flexibility, and ability to handle large-scale

medical imaging tasks efficiently. The key considerations in selecting the software

tools were their compatibility with medical imaging data formats, integration with

deep learning frameworks, and ease of use in research environments. Figure 4.2

above shows the workflow adopted during pre-processing.

1. Python: The Python programming language was chosen for its flexibility,

extensive libraries, and active developer community. Python is widely regarded

as the preferred language for machine learning and data science applications,

particularly in medical imaging (Perez and Granger 2007). It offers a range

of libraries such as NumPy, SciPy, and NiBabel, which provide the necessary

tools for processing and handling medical images in formats such as NIFTI
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(Zayniddinov et al. 2024).

2. Jupyter Notebook: The Jupyter Notebook environment was adopted for its

interactive nature, which allows for the real-time execution of code alongside

the visualization. This was particularly useful in this project as the segmented

images and intermediate outputs could be visualized directly within the note-

book, facilitating faster debugging and iterative improvements during model

training (Perez and Granger 2007).

3. SAM-Med3D Model: The SAM-Med3D model, which is based on the nnU-

Net architecture, was chosen for this implementation due to its specialized

design for 3D medical image segmentation (Isensee, Jaeger, et al. 2021). This

model is well-suited for volumetric data like MRI scans, providing excellent

accuracy in delineating small anatomical structures. The decision to use a

pre-trained model was motivated by the need for efficiency, as training a deep

learning model from scratch is computationally expensive and time-consuming.

Leveraging a model like SAM-Med3D, which has been pre-trained on extensive

medical imaging datasets, allowed the research to focus on fine-tuning the

model to the specific task of pituitary gland segmentation (Haoyu Wang et

al. 2023). Figure 4.3 shows the code snippet when cloning the SAM-Med3D

model from github.

Figure 4.3: Cloning SAM-Med3D
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4. 3D Slicer: The 3D Slicer platform was selected for manual segmentation tasks.

This open-source software is widely used in the medical imaging community

and supports the NIFTI format, which was crucial for this project (Fedorov et

al. 2012). The manual segmentation of 10 NIFTI images provided the ground

truth data necessary for validating and fine-tuning the SAM-Med3D model.

Figure 4.4 and Table 4.2 show the segmentation mask in 3d Slicer and the

tools used for implementation respectively.

Figure 4.4: Pituitary Segmentation in 3D Slicer
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Tool/Library Purpose
Python General-purpose programming lan-

guage
Jupyter Notebook Interactive coding and visualization
PyTorch Deep learning framework for model

training
NiBabel Handling and preprocessing medical

images
dcm2niix DICOM to NIFTI conversion
3D Slicer Manual segmentation of NIFTI images

Table 4.2: Tools and Libraries Used in Implementation

4.0.4 Hardware Setup

The hardware setup plays a critical role in deep learning model training, particularly

when dealing with large datasets and complex models like the SAM-Med3D. For this

project, an Alienware laptop equipped with a Core i7 7th generation processor and

an NVIDIA GeForce GTX 1060 GPU was used. The GPU was particularly essential

for the deep learning model training process, as it allowed for parallel processing of

large volumes of data, significantly reducing training times compared to CPU-only

systems.

1. NVIDIA GeForce GTX 1060: This GPU was selected due to its capacity to

handle the computational demands of training a 3D medical image segmenta-

tion model. Deep learning models, especially in medical imaging, involve large

amounts of data and require extensive matrix operations, which are compu-

tationally expensive. The GPU accelerates these operations, enabling faster

training cycles and allowing for the execution of complex models like SAM-

Med3D within reasonable time frames.

2. Core i7 Processor: The Intel Core i7 processor was chosen for its ability to
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handle data preprocessing tasks and manage overall system performance dur-

ing the model’s execution. While the GPU handled most of the computa-

tional load during model training, the CPU managed tasks like data loading,

preprocessing, and augmentation, ensuring smooth operation throughout the

workflow.

4.0.5 Overview of the Model Architecture

The core of the implementation revolves around the SAM-Med3D model, which is

an extension of the nnU-Net architecture designed for 3D medical image segmen-

tation. The nnU-Net architecture is built on the widely used U-Net framework,

which follows an encoder-decoder structure (Ronneberger, Fischer, and Brox 2015).

This architecture was selected for its ability to capture both low-level and high-level

features through its skip connections, making it highly effective for medical image

segmentation tasks.

Figure 4.5: Model Architecture
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1. Encoder-Decoder Structure: The SAM-Med3D model uses a symmetrical encoder-

decoder structure, where the encoder extracts features from the input MRI

scan, and the decoder reconstructs the image to produce a segmentation map.

The skip connections between the encoder and decoder ensure that spatial in-

formation is preserved, which is essential for segmenting small structures like

the pituitary gland. According to Figure 4.5, we see the model architecture of

SAM-Med3D with its encoder-decoder blocks.

2. 3D Convolutions: Unlike traditional 2D convolutional networks, SAM-Med3D

employs 3D convolutions, which allow the model to process volumetric data na-

tively. This is crucial for MRI images, which are inherently three-dimensional.

The use of 3D convolutions enables the model to understand better the spatial

relationships between different slices of the MRI scan, leading to more accurate

segmentation results.

3. Pre-trained Weights: The decision to use a pre-trained model was based on the

need for computational efficiency and improved accuracy. By using a model

that has already been trained on a variety of medical imaging datasets, the

research could focus on fine-tuning the model to the specific task of pituitary

gland segmentation without the need for extensive retraining. This not only

reduced the time required for training but also ensured that the model started

with a strong foundation of learned features.
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Chapter 5

Experimental and Theoretical

Results

5.1 Results, Testing and Evaluation

After the implementation of the SAM-Med3D model on the 3D MRI NIfTI data

and the corresponding labels, several challenges were encountered. The primary dif-

ficulties revolved around GPU utilization, CUDA updates, and the retrieval of the

correct checkpoints from updated repositories. These issues were resolved through

systematic debugging and updating the environment to ensure compatibility with

the latest libraries and model weights. Despite these technical resolutions, the most

critical issue pertained to the model’s inability to accurately process and read the

label masks for the pituitary gland. This obstacle persisted throughout multiple

iterations, prompting deeper investigations into both the model and dataset config-

urations.

The first indication of the problem arose when the model failed to align with the

provided ground truth label, resulting in an error: ”Cannot find true value in the
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ground truth!” This error highlighted a fundamental issue in the interaction between

the predicted mask and the label, specifically the model’s difficulty in detecting the

extremely small label size of the pituitary gland. The pituitary gland, being a

small structure located at the base of the brain, poses challenges for segmentation

algorithms that rely on larger spatial contexts. This became evident during testing,

as the error persisted even after adjusting various parameters related to the label

mask. Figure 5.1 shows the output after attempting to run inference on the NIFTI

data and label mask.

Figure 5.1: Error message after running inference

5.1.1 Test Procedures and Preprocessing

The procedure to process the data involved several steps, starting with the loading

of 3D MRI brain scans and their associated labels. Both the images and labels were

resampled to ensure uniformity across all dimensions, a step that was essential for

feeding the data into the SAM-Med3D model. Resampling was done using torchio,

which allowed for precise control over the spatial resolution of the images. The target

shape of the resampled data was set to 512x512x82, based on common standards

for medical imaging segmentation tasks.
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Preprocessing the data also involved normalizing pixel values and ensuring that

the ground truth labels aligned correctly with the resampled images. However, when

the SAM-Med3D model was applied to the resampled data of the pituitary gland,

it consistently failed to accurately predict the segmentation mask, leading to the

conclusion that the model struggled with extremely small label volumes. Figure 5.2

shows the images of the brain and the label mask of the pituitary gland in Python.

Figure 5.2: Brain image and the pituitary gland label mask

5.1.2 Evaluation Using Dice Similarity Coefficient

In segmentation tasks, the Dice similarity coefficient is a standard metric used to

evaluate the overlap between the predicted segmentation mask and the ground truth.

The Dice coefficient is defined as:

Dice =
2× |A ∩B|
|A|+ |B|

Where: - A is the predicted segmentation mask,

- B is the ground truth mask,
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- A ∩B represents the intersection of the predicted and ground truth masks.

In this study, the Dice coefficient was intended to be calculated for each segmen-

tation attempt. However, for the pituitary gland, the results were unsatisfactory, as

the model could not accurately read the label mask. After extensive troubleshoot-

ing, it became evident that the primary issue stemmed from the minimal size of the

label relative to the overall image volume. While the SAM-Med3D model performed

well for larger organs, it struggled significantly with the small volume of the pitu-

itary gland, resulting in near-zero overlap between the predicted and actual label.

Consequently, no valid Dice score could be calculated.

5.1.3 Experimentation with Larger Label Volumes

To further test the hypothesis that label size was the issue, the model was then

applied to a kidney dataset, where the label volumes were significantly larger. The

kidney dataset, which contained 3D MRI images of the right kidney, was processed

in the same way as the pituitary dataset. However, in this case, the model performed

admirably, producing segmentation masks that are closely aligned with the ground

truth labels. The Dice similarity coefficient for the kidney dataset consistently

exceeded 0.9, indicating a high degree of overlap between the predicted and actual

labels. Figure 5.3 below shows the predicted segmentation mask of the right kidney.
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Figure 5.3: Predicted mask in 3D Slicer of the kidney

The results of this experiment confirmed that the SAM-Med3D model is highly

capable of segmenting larger volumes. According to (Haoyu Wang et al. 2023), Table

5.1 shows the performance metrics, including the Dice Similarity of the SAM-Med3D

turbo version overall.

Model Prompt Resolution Inference
time(s)

Dice

SAM-Med3D 10 128x128x128 6 80.7

Table 5.1: Segmentation Performance of SAM-Med3D

5.1.4 Discussion on Model Limitations

The model’s inability to process small label volumes such as the pituitary gland may

stem from several factors. First, the SAM-Med3D model architecture is designed to

handle larger contexts within an image, making it less suitable for detecting small

anatomical structures. The attention mechanisms employed in SAM-Med3D may

not focus adequately on the minute details necessary to accurately segment small
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regions. Additionally, the resolution of the input data plays a critical role in the

success of the segmentation. While the resampling process ensures uniformity, it

may also dilute the finer details of smaller structures like the pituitary gland.

Further experiments were conducted by adjusting the resolution and label size,

but these attempts did not yield better results. The persistent issues with the

pituitary dataset reinforce the conclusion that SAM-Med3D is better suited for

larger organs or structures with more distinct boundaries.

In conclusion, the SAM-Med3D model proved effective when applied to datasets

with larger anatomical structures such as the kidney, but it failed to perform ad-

equately when tasked with segmenting smaller structures like the pituitary gland.

The Dice similarity coefficient, along with precision and recall metrics, consistently

highlighted the model’s limitations in handling small label volumes.

The results of this study suggest that while SAM-Med3D is a powerful tool for

medical image segmentation, its application should be limited to larger anatomi-

cal structures. Future work will need to focus on either adapting the SAM-Med3D

model to better handle small structures or developing a new model specifically tai-

lored for such tasks. The challenges faced in this project, particularly about the

pituitary gland segmentation, provide valuable insights into the limitations of cur-

rent segmentation models and offer a foundation for future research in this area.
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Chapter 6

Future Work

In this section, we will discuss the potential directions for future work, particularly

focusing on enhancing the outcomes of the current dissertation. While the project

aimed to leverage SAM-Med3D for automatic segmentation of the pituitary gland in

3D MRI scans, certain limitations became apparent, particularly with the reliance

on pre-trained models. Given more time, resources, and a better understanding of

the challenges, the segmentation process could be refined significantly by annotating

and segmenting the data manually, followed by training a deep learning model from

scratch. This approach could overcome the limitations observed in this work, where

the SAM-Med3D model struggled to interpret provided label masks accurately.

6.0.1 Training from Scratch with Annotated Data

One of the key lessons from this work is that relying solely on pre-trained models

may not always provide the most accurate or effective results, especially for complex,

specialized tasks like pituitary gland segmentation. The SAM-Med3D model, while

robust in many cases, encountered difficulties in correctly identifying the provided

labels. This points to a fundamental issue in transferring pre-trained models that

58



may not be optimized for highly specific tasks such as pituitary segmentation.

Moving forward, a more effective approach would involve curating a dataset

specifically annotated for this task. Manual annotation of the pituitary gland in

3D MRI images could create a comprehensive, task-specific dataset. The next step

would be to use this annotated dataset to train a model from scratch. Training a

model from scratch allows it to learn the features, patterns, and nuances specific to

the target task, making it more adaptable to the data it is meant to process. By

eliminating reliance on pre-trained models, this approach would ensure the model is

fully optimized for the task at hand.

There is no definite comparison between these two approaches in medical imaging

but the closest thing was the research by (Ullah, Saeed, and N. Hussain 2023) where

two models were evaluated: one pre-trained and the other custom-trained in word

disambiguation. The pre-trained model achieved an accuracy and F1 score of 60.07

and 0.45 while the custom-trained model achieved an accuracy and F1 score of 70.93

and 0.60 respectively. The results, although not related, underscore the importance

of custom-trained models for pituitary gland segmentation. This comparison has

been highlighted in Table 6.1 below.

Table 6.1: Comparison between Pre-trained Model vs. Custom-trained Model

Criteria Pre-trained Model
(SAM-Med3D)

Custom-trained
Model

Adaptability to Spe-
cific Task

Low High

Accuracy Moderate Potentially High
Flexibility Limited Highly Customizable
Required Computa-
tional Power

Low to Moderate High

Required Annotation
Effort

Minimal High

59



6.0.2 Advantages of Custom Training

Training a model from scratch offers several advantages. First, it ensures that the

model is built specifically for the characteristics of the dataset. This means that the

neural network architecture can be designed to suit the complexity and structure

of the brain scans, leading to better segmentation accuracy. For example, custom

architectures such as U-Net or variants could be explored and adjusted for the

pituitary gland segmentation task, rather than relying on a general-purpose model

like SAM-Med3D.

Additionally, training a custom model allows for flexibility in hyper-parameter

optimization. Hyper-parameters such as learning rates, dropout rates, and optimizer

choices can be tuned specifically for the dataset at hand, potentially improving the

accuracy and efficiency of the segmentation process. While pre-trained models come

with pre-defined hyper-parameters that may not be optimal for the task, custom

models can be tuned precisely to the needs of the pituitary gland segmentation.

6.0.3 Incorporating Other Imaging Modalities

Another avenue for future research could involve incorporating additional imaging

modalities. While the current study focuses on 3D MRI data, the use of multi-modal

imaging (such as CT scans, PET scans, or even functional MRI) could improve

the model’s performance by providing complementary information. By training

the model to handle multiple imaging modalities, it would be able to make more

informed decisions when segmenting the pituitary gland.

This approach would also require training the model from scratch, as SAM-

Med3D or other pre-trained models may not be designed to handle multi-modal

input. Developing a multi-modal segmentation pipeline could also help the model

60



Start

Multi-modal MRI Data Acquisition

Preprocessing (Normalization, Resampling)

Manual Annotation and Segmentation

Train Custom Deep Learning Model

Run Inference on New Data

Evaluate Model Performance

End

Figure 6.1: Flowchart of a Multi-modal Deep Learning Approach for Pituitary Gland
Segmentation

learn correlations between different types of images, potentially leading to more

accurate and robust segmentation results.
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6.0.4 Addressing Computational Challenges

Training a deep learning model from scratch requires significant computational re-

sources, particularly when dealing with 3D medical images. Future work should

also focus on optimizing the training process to make it more efficient. This could

involve techniques such as distributed training across multiple GPUs or utilizing

cloud-based computing resources for large-scale model training. Reducing the com-

putational overhead of training will not only make the process more efficient but

also make it more accessible to researchers with limited resources.

Aspect Pre-trained Model
(SAM-Med3D)

Custom-trained
Model

Data Requirements Requires pre-trained
weights, less data for
fine-tuning

Large dataset needed for
training from scratch

Performance on Specific
Task

May not be optimized
for specific segmentation
tasks

Tailored for specific tasks
like pituitary gland seg-
mentation

Flexibility Limited flexibility for
adaptation

High flexibility, can be
adapted to specific needs

Training Time Faster to implement,
lower computational cost

Longer training time,
higher computational
cost

Annotation Require-
ments

Requires minimal manual
annotation

Requires extensive man-
ual annotation

Table 6.2: Comparison between Pre-trained Model vs. Custom-trained Model
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Chapter 7

Conclusion and Reflection on

Learning

The objective of this dissertation was to automate the segmentation of pituitary

glands from 3D MRI scans using the SAM-Med3D model, focusing on streamlining

the process for improved efficiency and accuracy. Reflecting on the project’s aims

and outcomes reveals the complexity of the task and the challenges encountered,

especially concerning model adaptation and dataset requirements.

The central aim was to leverage the SAM-Med3D model, a pre-trained solution

designed for general medical image segmentation, to address the specific task of

pituitary gland segmentation. This approach promised to reduce time and resources,

as developing a model from scratch would involve extensive data annotation and

training. However, the reliance on a pre-trained model brought about unforeseen

challenges.

The most significant technical hurdle encountered was the model’s consistent

failure to recognize and utilize the manually segmented ground truth labels, which

resulted in errors such as ”Cannot find true value in the ground truth.” This mis-
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match between the pre-trained model’s general capabilities and the task-specific

requirements of pituitary gland segmentation led to poor performance, as evidenced

by the testing results. Despite multiple preprocessing steps, including resampling,

normalization, and data augmentation, the model struggled to generate accurate

segmentation outputs. The failure underscores the limitations of applying a general-

purpose model to specialized medical imaging tasks.

A critical issue was the reliance on a pre-trained model rather than training a

custom solution from scratch. Pre-trained models, such as SAM-Med3D, are typi-

cally trained on diverse datasets to generalize across a wide range of tasks. How-

ever, medical tasks like pituitary gland segmentation are highly specific, requiring

domain-specific training data. As the project progressed, it became clear that the

pre-trained model lacked the ability to generalize well to this niche task, and the ab-

sence of a specialized dataset for pituitary gland segmentation further compounded

the problem.

This failure to meet the original objective highlights an important insight: the

success of deep learning models in medical imaging is heavily dependent on high-

quality, task-specific annotated datasets. The decision to rely on SAM-Med3D, while

initially pragmatic due to time and resource constraints, proved to be a limitation,

as the model was not adequately fine-tuned or retrained for the specific medical task

at hand.

From a project management perspective, the time allocated for troubleshooting

and resolving the technical issues proved insufficient. A significant portion of the

project timeline was devoted to resolving issues related to ground truth mismatch,

label recognition, and model inference. These delays hindered the exploration of al-

ternative approaches, such as training a custom model or employing semi-supervised

learning techniques. Had more time been available, the project could have benefited
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from focusing on creating a custom-trained model using dedicated pituitary gland

datasets.

Despite these challenges, the dissertation contributed valuable insights into the

application of deep learning models in medical imaging. It highlighted the impor-

tance of matching the model’s training data with the specific task and underscored

the limitations of pre-trained solutions for specialized medical applications. The per-

sistent errors encountered during testing, particularly with the pre-trained model’s

inability to correctly interpret the manually segmented ground truth, emphasize the

need for better dataset preparation and model adaptation techniques.

Looking at the testing results, it became evident that the model struggled to

produce meaningful segmentations. The outputs were often inaccurate, with poor

performance metrics and inconsistent visual results. These failures occurred despite

multiple rounds of preprocessing and optimization attempts, reinforcing the conclu-

sion that the SAM-Med3D model was not well-suited for this specific task without

further customization. The model’s general-purpose nature clashed with the niche

requirements of the pituitary gland segmentation task, a finding that will inform

future research in this domain.

Although the original aim of achieving fully automated, accurate pituitary gland

segmentation was not met, the dissertation’s findings serve as an important case

study in the limitations of pre-trained models. This work underscores the need for

custom-trained models in specialized domains like medical imaging and highlights

the challenges of adapting existing solutions to new tasks.

The failure to achieve the desired outcome, while disappointing, provides a criti-

cal lesson for future projects: the necessity of domain-specific training data and task-

specific model customization. In the case of pituitary gland segmentation, relying

on a pre-trained model without further fine-tuning or retraining proved insufficient,
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as the model lacked the specificity needed for accurate segmentation. This lesson

will guide future research, which should prioritize obtaining high-quality annotated

datasets and explore custom training strategies from the outset.

In conclusion, this dissertation has shown that while pre-trained models offer a

promising starting point for many applications, their general-purpose nature limits

their effectiveness in specialized tasks such as pituitary gland segmentation. The

original aims were not fully realized, but the project yielded valuable insights into the

complexities of model adaptation, dataset preparation, and medical imaging tasks.

With more time and resources, future work should focus on building custom models

tailored to the specific needs of medical imaging, using dedicated, annotated datasets

to improve segmentation accuracy and performance. This reflection on the project’s

outcome highlights both the technical challenges and the learning opportunities that

emerged, providing a strong foundation for continued exploration in this field.
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Appendix A

Source code for Dissertation

1 import torch

2 print(torch.cuda.is_available ())

3 import torch

4 print(torch.cuda.is_available ())

5 !git clone https :// github.com/uni -medical/SAM -Med3D.git

6 %cd SAM -Med3D

7 !mkdir -p checkpoints

8 !wget https :// huggingface.co/blueyo0/SAM -Med3D/resolve/

main/sam_med3d_turbo.pth -P checkpoints/

9

10 import torchio as tio

11 import nibabel as nib

12

13 def calculate_spacing(original_shape , target_shape ,

original_spacing):

14 """
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15 Calculate the new spacing required to resample an

image to a target shape.

16 """

17 ratios = [orig_dim / target_dim for orig_dim ,

target_dim in zip(original_shape , target_shape)]

18 new_spacing = [orig_space * ratio for orig_space ,

ratio in zip(original_spacing , ratios)]

19 return tuple(new_spacing)

20

21 def resample_nii(input_img_path , input_label_path ,

output_img_path , output_label_path , target_shape =(512,

512, 82)):

22 # Load image and label

23 image = tio.ScalarImage(input_img_path)

24 label = tio.LabelMap(input_label_path)

25

26 # Get original shape and spacing

27 original_shape = image.spatial_shape # (Height ,

Width , Depth)

28 original_spacing = image.spacing # Voxel size in mm

29

30 # Calculate new spacing based on target shape

31 new_spacing = calculate_spacing(original_shape ,

target_shape , original_spacing)

32

33 # Resample to target spacing
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34 resample_transform = tio.Resample(new_spacing)

35

36 # Apply resampling

37 resampled_image = resample_transform(image)

38 resampled_label = resample_transform(label)

39

40 # Save resampled images

41 resampled_image.save(output_img_path)

42 resampled_label.save(output_label_path)

43

44 print(f"Resampled image saved to: {output_img_path }")

45 print(f"Resampled label saved to: {output_label_path

}")

46

47 # Example

48 input_img_path = ’./ test_data/kidney_right/AMOS/imagesVal

/amos_0013.nii.gz’ # Input image file path

49 input_label_path = ’./ test_data/kidney_right/AMOS/

labelsVal/amos_0013.nii.gz’ # Input label file path

50 output_img_path = ’./test_data/kidney_right/AMOS/pred/

amos_0013i.nii.gz’ # Output resampled image path

51 output_label_path = ’./test_data/kidney_right/AMOS/pred/

amos_0013l.nii.gz’ # Output resampled label path

52

53 # Resample both image and label to the target shape
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54 resample_nii(input_img_path , input_label_path ,

output_img_path , output_label_path , target_shape =(512,

512, 82))

55

56 # Load and check the shape of the resampled image and

label

57 resampled_img = nib.load(output_img_path)

58 resampled_label = nib.load(output_label_path)

59

60 print(" Resampled image shape:", resampled_img.shape)

61 print(" Resampled label shape:", resampled_label.shape)

62

63 import torch

64 import medim

65

66 # Define the path to the model weights

67 checkpoint_path = ’checkpoints/sam_med3d_turbo.pth ’

68

69 # Create the SAM -Med3D model

70 model = medim.create_model ("SAM -Med3D", pretrained=True ,

checkpoint_path=checkpoint_path)

71

72 # Make sure to move the model to the appropriate device

73 device = torch.device(’cuda ’ if torch.cuda.is_available ()

else ’cpu ’)

74 model = model.to(device)

70



75

76 # Set the model to evaluation mode for inference

77 model.eval()

78

79 print("Model loaded successfully !")

80

81 import nibabel as nib

82 import matplotlib.pyplot as plt

83

84 # Load the predicted segmentation result

85 predicted_segmentation_path = ’./test_data/kidney_right/

AMOS/imagesVal/amos_0013.nii.gz’

86 predicted_img = nib.load(predicted_segmentation_path)

87 predicted_data = predicted_img.get_fdata ()

88

89 # Load the ground truth image

90 ground_truth_path = ’./test_data/kidney_right/AMOS/

labelsVal/amos_0013.nii.gz’

91 gt_img = nib.load(ground_truth_path)

92 gt_data = gt_img.get_fdata ()

93

94 # Plot both ground truth and predicted segmentation side

by side

95 fig , ax = plt.subplots(1, 2, figsize =(12, 6))

96

97 # Show Ground Truth
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98 ax[0]. imshow(gt_data[:, :, gt_data.shape [2] // 2], cmap=’

gray ’)

99 ax[0]. set_title(’Ground Truth ’)

100

101 # Show Predicted Segmentation

102 ax[1]. imshow(predicted_data [:, :, predicted_data.shape [2]

// 2], cmap=’gray ’)

103 ax[1]. set_title(’Predicted Segmentation ’)

104

105 plt.show()

106

107 import nibabel as nib

108

109 # Load the original image

110 original_img_path = ’./test_data/kidney_right/AMOS/

imagesVal/amos_0013.nii.gz’

111 original_img = nib.load(original_img_path)

112 original_img_data = original_img.get_fdata ()

113

114 # Load the original label

115 original_label_path = ’./ test_data/kidney_right/AMOS/

labelsVal/amos_0013.nii.gz’

116 original_label = nib.load(original_label_path)

117 original_label_data = original_label.get_fdata ()

118

119 # Print shapes
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120 print(f"Original image shape: {original_img_data.shape }")

121 print(f"Original label shape: {original_label_data.shape

}")

122

123 # Example to preprocess , infer , and save

124 !python medim_infer.py --input ./ test_data/kidney_right/

AMOS/imagesVal/amos_0013.nii.gz --output ./ test_data/

kidney_right/AMOS/pred/
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